Historia del cálculo
Diagrama de Arquímedes
Las principales ideas que apuntalan el cálculo se desarrollaron durante un periodo de tiempo muy largo sin duda. Los primeros pasos fueron dados por los matemáticos griegos. Para los antiguos griegos, los números eran cocientes de enteros así que la recta numérica tenía 'hoyos' en ella. Le dieron la vuelta a esta dificultad usando longitudes, áreas y volúmenes además de números ya que, para los griegos, no todas las longitudes eran números.
Zenón de Elea, alrededor de 450 a. C., planteó una serie de problemas que estaban basados en el infinito. Por ejemplo, argumentó que el movimiento es imposible: Si un cuerpo se mueve de A a B entonces, antes de llegar a B pasa por el punto medio, B1, de AB. Ahora bien, para llegar a B1 debe primero pasar por el punto medio B2 de AB1. Continuando con este argumento se puede ver que A debe moverse a través de un número infinito de distancias y por lo tanto no puede moverse. Leucipo, Demócrito y Antifon hicieron contribuciones al método exhaustivo griego al que Eudoxo dio una base científica alrededor de 370 a. C. El método se llama exhaustivo ya que considera las áreas medidas como expandiéndolas de tal manera que cubran más y más del área requerida.
Diagrama de Arquímedes
Sin embargo, Arquímedes, alrededor de 225 a. C. hizo uno de las contribuciones griegas más significativas. Su primer avance importante fue demostrar que el área de un segmento de parábola es 4/3 del área del triángulo con los mismos base y vértice y es igual a 2/3 del área del paralelogramo circunscrito. Arquímedes construyó una secuencia infinita de triángulos empezando con uno de área A y añadiendo continuamente más triángulos entre los existentes y la parábola para obtener áreas A, A + A/4, A + A/4 + A/16, A + A/4 + A/16 + A/64, ... El área del segmento de la parábola es, por lo tanto:
A(1 + 1/4 + 1/4² + 1/4³ + ...) = (4/3)A.
Este es el primer ejemplo conocido de suma de una serie infinita. Arquímedes usó el método exhaustivo para encontrar la aproximación al área de un círculo. Esto, por supuesto, es un ejemplo temprano de integración que llevó a valores aproximados de p. Entre otras 'integraciones' de Arquímedes estaban el volumen y la superficie de una esfera, el volumen y área de un cono, el área de una elipse, el volumen de cualquier segmento de un paraboloide de revolución y un segmente de un hiperboloide de revolución. No hubo más progresos hasta el siglo XVI cuando la mecánica empezó a llevar a los matemáticos a examinar problemas como el de los centros de gravedad.
Luca Valerio
(1552-1618) publicó De quadratura parabolae en Roma (1606) que continuaba los métodos griegos para atacar este tipo de problemas de calcular áreas. Kepler, en su trabajo sobre movimientos planetarios, tenía que encontrar el área de sectores de una elipse. Su método consistía en pensar en las áreas como sumas de líneas, otra forma rudimentaria de integración, pero Kepler tenía poco tiempo para el rigor griego y más bien tuvo suerte de obtener la respuesta correcta ya que cometió dos errores que se cancelaron uno al otro en su trabajo. Tres matemáticos, nacidos en un periodo de tres años, fueron los siguientes en hacercontribuciones importantes.
Eran Fermat, Roberval y Cavalieri. Este último llegó a su'método de los indivisibles' por los intentos de integración de Kepler. No fue riguroso en su acercamiento y es difícil ver con claridad cómo se le ocurrió su método. Al parecer Cavalieri pensó en un área como formada por componentes que eran líneas y luego sumó su número infinito de 'indivisibles'. Demostró, usando estos métodos, que la integral de xn entre 0 y a era an+1/(n+1) mostrando el resultado para ciertos valores de n e infiriendo el resultado general. Roberval consideró problemas del mismo tipo pero fue mucho más riguroso que Cavalieri. Roberval se fijó en el área entre una curva y una línea como formada por un número infinito de rectángulos infinitamente delgados. Aplicó esto a la integral de xm entre 0 y 1 y demostró que tenía un valor aproximado de (0m + 1m + 2m +...+ (n-1) m)/nm+1.
Roberval entonces afirmó que esto tendía a 1/(m+1) cuando n tiende a infinito, calculando así el área. Fermat también fue más riguroso en su acercamiento pero no dio demostraciones.
Generalizó la parábola y la hipérbola: Parábola: y/a = (x/b)² generalizada como (x/a)n = (y/b)m.
Hipérbola: y/a = (b/x)² generalizada como (y/a)n = (b/x)m. Al estar examinando y/a = (x/b)p, Fermat calculó la suma de rp para r entre 1 y n. Triángulo de Barrow El siguiente paso importante lo dieron Torricelli y Barrow. El segundo dio un método de tangentes a una curva en el que la tangente está dada como el límite de una cuerda cuando los puntos se acercan uno a otro y que es conocido como el triángulo diferencial deBarrow.
Tanto Torricelli como Barrow estudiaron el problema del movimiento con velocidad variable. La derivada de la distancia es la velocidad y la operación inversa nos lleva de la velocidad a la distancia. De aquí empezó a evolucionar naturalmente una concienciación de la inversa de la diferenciación y que Barrow estuviera familiarizado con la idea de que integral y derivada son inversas una de otra. De hecho, aunque Barrow nunca afirmó explícitamente el teorema fundamental del cálculo, estaba trabajando hacia el resultado y Newton continuaría en esta dirección y daría explícitamente el Teorema Fundamental delCálculo.
El trabajo de Torricelli fue continuado en Italia por Mengoli y Angeli. Newton calculó la expansión en serie de sen x y cos x y la expansión de lo que en realidad es la función exponencial pero ésta función no quedaría establecida como tal hasta que Euler introdujo la notación actual ex. Aquí se pueden ver la Newton fue el Tractatus de Quadrarura Curvarum que escribió en 1693 pero no fue publicado hasta 1704 cuando la publicó como un apéndice de su Optiks. Su trabajo contiene otro acercamiento que involucra el cálculo de límites. Newton dice: En el tiempo en que x al fluir se convierte en x + o, la cantidad xn se convierte en (x + o)n, es decir, por el método de series infinitas, xn + noxn-1 + (nn - n)/2 ooxn-2 + ...
Al final deja que el incremento o desaparezca 'tomando límites' Leibniz pensaba que las variables x, y variaban sobre secuencias de valores infinitamente cercanos. Introdujo a dx y dy como las diferencias entre valores consecutivos de esas secuencias. Leibniz sabía que dx/dy da la tangente pero no la usó como una propiedad que defina. Para Newton, la integración consistía en encontrar flujos para una fluxión dada así que se implica el hecho de que la integración y la diferenciación son inversas. Leibniz usaba la integral como una suma, de forma muy similar a la de Cavalieri. También estaba contento con el uso de las 'infinitesimales' dx y dy mientras que Newton usaba x' y y' que eranvelocidades finitas. Por supuesto que ni Leibniz ni Newton pensaban en términos de funciones, pero ambos pensaban siempre en términos de gráficas. Para Newton, el cálculo era geométrico mientras que Leibniz lo llevó hacia el análisis. Leibniz estaba bien consciente de que encontrar una buena notación era sumamente importante y pensó en ella mucho tiempo. Newton, por otro lado, escribió más bien para él mismo y, como consecuencia, tendía a usar cualquier notación que se lo ocurriera ese día. La notación d y . de Leibniz destacaban el aspecto de operadores que probaría ser importante más adelante. Para 1675, Leibniz se había quedado con la notación
.y dy = y²/2
escrita exactamente como se hace hoy. Sus resultados sobre cálculo integral fueron publicados en 1864 y 1686 con el nombre de calculus summatorius; el término 'cálculo integral' fue sugerido por Jacobo Bernoulli en 1690. En el año 1684, el profesor y diplomático alemán Gottfried Wilhelm Leibniz publicó un trabajo matemático en la revista Acta Eruditorum en el que se anunciaba "un nuevo método para los máximos, los mínimos y las tangentes, que no es obstaculizado por las cantidades fraccionarias, niirracionales, así como un notable tipo de cálculo para esto", es decir, un trabajo acerca de lo que hoy conocemos con el nombre de cálculo diferencial. Dos años después publicó, en esa misma revista, las bases de lo que conocemos hoy como Cálculo Integral. Aunque Leibniz fue el primero en publicar un trabajo sobre cálculo, quien primerodesarrolló estos temas fue Isaac Newton durante los años 1664 a 1666. Por entonces, Newton era estudiante del Trinity College de Cambridge e inventó lo que él llamó las fluxiones, que no eran otra cosa que un conjunto de reglas con las que también podía calcular máximos, mínimos ytangentes sin que las cantidades fraccionarias o irracionales supusieran ningún obstáculo.
. En 1669, cuando Newton contaba 27 años, ya ocupaba una cátedra de matemáticas enCambridge, pero cuando realmente saltó a la cumbre de la fama fue en 1687, año en que publicó su libro Principia Mathematica, obra que, según algunos, es el mayor libro científico jamás escrito. En ella explicaba las leyes que rigen el universo, y deducía matemáticamente desde los flujos de las mareas hasta las órbitas de los planetas. Con esta obra, Newton se convirtió en el símbolo vivo de la nueva ciencia y en un semidiós de los ámbitos científicos. A partir de ahí, lo hicieron diputado, Director de la Real Casa de la Moneda y presidente de la Royal Society (organismo inglés integrado por los más prestigiosos científicos)
No hay comentarios:
Publicar un comentario